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Abstract. As many coastal regions experience a rapid increase in offshore wind farm installations, inter-farm
distances become smaller, with a tendency to install larger turbines at high capacity densities. It is, however,
not clear how the wake losses in wind farm clusters depend on the characteristics and spacing of the individual
wind farms. Here, we quantify this based on multiple COSMO-CLM simulations, each of which assumes a
different, spatially invariant combination of the turbine type and capacity density in a projected, future wind
farm layout in the North Sea. An evaluation of the modelled wind climate with mast and lidar data for the period
2008–2020 indicates that the frequency distributions of wind speed and wind direction at turbine hub height are
skillfully modelled and the seasonal and inter-annual variations in wind speed are represented well. The wind
farm simulations indicate that for a typical capacity density and for SW winds, inter-farm wakes can reduce
the capacity factor at the inflow edge of wind farms from 59 % to between 54 % and 30 % depending on the
proximity, size and number of the upwind farms. The efficiency losses due to intra- and inter-farm wakes become
larger with increasing capacity density as the layout-integrated, annual capacity factor varies between 51.8 % and
38.2 % over the considered range of 3.5 to 10 MW km−2. Also, the simulated efficiency of the wind farm layout
is greatly impacted by switching from 5 MW turbines to next-generation, 15 MW turbines, as the annual energy
production increases by over 27 % at the same capacity density. In conclusion, our results show that the wake
losses in future wind farm clusters are highly sensitive to the inter-farm distances and the capacity densities of
the individual wind farms and that the evolution of turbine technology plays a crucial role in offsetting these
wake losses.
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1 Introduction

The global capacity of offshore wind technologies has in-
creased more than 10-fold over the previous decade as part of
the urgent transition to low-emission energy systems (IPCC,
2022). In 2021, the unprecedented commissioning of over
17 GW of offshore wind capacity pushed the cumulative,
global capacity past 50 GW (Musial et al., 2022). In Eu-
rope, hosting more than half of that global offshore capac-
ity, annual growth rates are expected to surpass 4 GW per
year in 2023 (Komusanac et al., 2021). At the same time,
the size and capacity of individual turbines are increasing,
with a global average rating of 7.4 MW (8.5 MW in Eu-
rope) in 2021 compared to 3.3 MW in 2011 (Komusanac
et al., 2021; Musial et al., 2022). As wind turbines off-
shore are organized in arrays, the total efficiency is impacted
by turbine-to-turbine wake effects which strongly depend
on the inter-turbine spacing and the size of the wind farm
(e.g. Meyers and Meneveau, 2012; Stevens et al., 2016; An-
tonini and Caldeira, 2021). Currently, limited space and the
urgent decarbonization of electricity systems lead to the in-
stallation and planning of very dense wind farms (capacity
density> 10 MW km−2) and exceptionally large wind farms
(capacity> 1 GW) that are strongly impacted by these tur-
bine interactions (Borrmann et al., 2018; Komusanac et al.,
2020; EMODnet, 2022). On top of that, hotspots such as
the North Sea are becoming more densely built (Matthijsen
et al., 2018), which amplifies the risk of inter-farm interfer-
ence through far-field wind farm wakes. These can extend
several tens of kilometres (Platis et al., 2018; Schneemann
et al., 2020) and can lead to considerable reductions in the
wind resource (e.g. Lundquist et al., 2019; Akhtar et al.,
2021; Munters et al., 2022). These developments raise ques-
tions on the magnitude of intra- and inter-farm wake losses in
a future, densely clustered wind farm layout including large
wind farms. Mesoscale models have been applied to illus-
trate the strongly reduced efficiency of very large wind farms
(e.g. Volker et al., 2017; Antonini and Caldeira, 2021; Pryor
et al., 2021) and how this depends on the turbine spacing
(Volker et al., 2017), but also how wind farms can signif-
icantly alter the energy yield of neighbouring wind farms
(e.g. Akhtar et al., 2021; Fischereit et al., 2022b). In this
study, we aim to complement the existing work by quan-
tifying how the long-term effect of wake losses in a hy-
pothetical, future North Sea wind farm layout depends on
the characteristics of the individual wind farms and on the
inter-farm distances. Concretely, this is done based on a set
of continuous simulations for one representative wind year,
with each simulation including a different but spatially in-
variant combination of the turbine type and capacity density
for the wind farms in a projected, future wind farm layout.
Although the WRF model is the most commonly used
mesoscale model for wind energy applications (Fischereit
et al., 2022a), it is important to involve several mesoscale
models to determine whether signals are robust, especially

when going to climatological timescales. In this study, we
make use of the regional climate model COSMO-CLM,
which has previously been applied for mesoscale wind
farm simulations (Chatterjee et al., 2016; Akhtar et al.,
2021, 2022) and also for the modelling of wind and wind
resources of the past (e.g. Reyers et al., 2015; Geyer et al.,
2015; Li et al., 2016) and future (e.g. Nolan et al., 2014; San-
tos et al., 2015; Reyers et al., 2016). The quality of mesoscale
wind farm simulations relies heavily on the accurate simu-
lation of the background wind climate, which is why these
models are typically evaluated with in situ, lidar and/or satel-
lite data (e.g. Hahmann et al., 2015; van Stratum et al., 2022;
Dirksen et al., 2022). The COSMO-CLM model has been
shown to skilfully reproduce winds from LES (Chatterjee
et al., 2016) and measurements by offshore masts (Geyer
et al., 2015; Akhtar et al., 2021). However, these evaluations
have only considered a limited number of datasets and time
periods. Therefore, an additional objective of this study is
to extend the evaluation of COSMO-CLM based on a large
set of multi-year, spatially distributed mast and wind lidar
data and a satellite product covering most of the North Sea.
With the focus on the wind resource, the evaluation includes
metrics of power production derived from the modelled and
measured wind speed data.

2 Data and methods

2.1 Model description

The development of the regional climate model COSMO-
CLM (COSMO version 5.0, CLM version 15) is a joint
effort between the COnsortium for Small-scale MOdelling
(COSMO) and the Climate Limited-area Modelling commu-
nity (CLM-Community) (Rockel et al., 2008). The Runge–
Kutta dynamical core solves the non-hydrostatic, compress-
ible hydro-thermodynamical equations on a rotated latitude–
longitude grid (Doms and Baldauf, 2013). Several coor-
dinate systems are available in the vertical dimension, of
which we used the height-based, terrain-following coordi-
nate with grid stretching. Additional physical processes were
represented with available parametrizations: for subgrid-
scale turbulence the standard choice was adopted, which is
the one-dimensional diagnostic closure scheme (level 2.5)
which is based on a prognostic TKE equation after Mellor
and Yamada (1982) as described in Raschendorfer (2001).
Surface fluxes were also parametrized and are coupled to
the included multi-layer soil model, TERRA-ML. In addi-
tion, parametrizations for grid-scale clouds and precipita-
tion, moist convection, and radiative processes were included
(Doms et al., 2013). An extensive description of the model
system is available in the documentation (e.g. Doms and Bal-
dauf, 2013).

The simulation domain covered a large fraction of the
North Sea with a horizontal grid spacing of 0.025° (∼
2.8 km) (Fig. 1). In the vertical dimension, 61 levels were
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Figure 1. Map of the study area showing the simulation domain (cyan, solid line) and the evaluation domain (cyan, dashed line). The
locations of the in situ measurement stations (orange dots) and lidar stations (green triangles) that are used for the model evaluation are also
indicated, in addition to the hypothetical future wind farm layout (grey polygons) and the four analysis transects TR1–TR4 (yellow lines)
used for the wind farm simulations. Created using QGIS3.4.

used up to an elevation of 22 km with a spacing of ap-
proximately 20 m near the surface and 30 m at turbine hub
height. The relaxation zone at the lateral boundaries was set
to a width of 40 km, whereas the spin-up zone was consid-
ered an additional 73 km wide, in agreement with the rec-
ommendations of Matte et al. (2017). The remaining inner
part of the simulation domain was considered for the evalu-
ation and analysis (Fig. 1). The ERA5 reanalysis (Hersbach
et al., 2020) was used as forcing at the boundaries with up-
dates every hour. No additional nesting stages were used, in
line with results from Brisson et al. (2015). At the meso-γ
scale, the model resolution partly allows the explicit devel-
opment of deep convection so that only shallow convection
was parametrized according to the scheme of Tiedtke (1989).
Switching of the deep convection parametrization on this res-
olution has previously been shown not to degrade COSMO
simulations (Vergara-Temprado et al., 2020). In COSMO5.0,
the TKE advection term in the prognostic equation is only

included for the experimental, LES-type turbulence schemes.
With the focus on wind farm wake development in the second
part of this study, we implemented the TKE advection term
for the standard turbulence scheme in COSMO5.0 based on
version 5.01.

Specific to this study, we also employed the Fitch wind
farm parametrization (WFP; Fitch et al., 2012), which has
been implemented in COSMO5-CLM15 (Chatterjee et al.,
2016; Akhtar and Chatterjee, 2020). This additional mod-
ule represents the wind farm forcing on the atmosphere as
a sink of kinetic energy and a source of TKE. Although
it has been suggested to reduce the TKE coefficient in the
parametrization based on a comparison with large eddy sim-
ulations (LES) (Archer et al., 2020), the original value was
retained in this study, as other studies did not find that this
leads to better performance (Siedersleben et al., 2020; Larsén
and Fischereit, 2021). Several other wind farm parametriza-
tions exist (Fischereit et al., 2022a), and it has been shown
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that the modelled wind speed deficits inside and behind a
wind farm can vary substantially from the Fitch WFP (Ali
et al., 2023). However, validation of the Fitch WFP with
offshore masts, lidars and airborne measurements in the
wake of a wind farm has shown very good performance for
HARMONIE-AROME as wind speed biases are strongly re-
duced (van Stratum et al., 2022; Dirksen et al., 2022). This
good performance has also been determined in WRF by com-
paring to offshore masts (Garcia-Santiago et al., 2022) and
in COSMO-CLM by comparing to LES (Chatterjee et al.,
2016) and airborne measurements (Akhtar et al., 2021). Wind
speed reductions inside of a wind farm have also been shown
to agree well with airborne measurements (Ali et al., 2023),
mast measurements (Dirksen et al., 2022) and RANS simula-
tions (Fischereit et al., 2022c). Moreover, comparisons with
other WFP schemes show that Fitch generally outperforms
these other schemes, both inside a wind farm and in the farm
wake (Fischereit et al., 2022c; Ali et al., 2023). For a detailed
overview of the performance validation of this parametriza-
tion, we refer to the review of Fischereit et al. (2022a).

2.2 Evaluation run

To evaluate the model performance, a simulation was per-
formed for a period of 13 years (2008–2020). Data from in
situ, lidar and satellite measurements over the North Sea are
abundant in both space and time for this period. Addition-
ally, the length of the simulation ensures that a large vari-
ation in wind conditions, as described in e.g. Geyer et al.
(2015) and Ronda et al. (2017), is sampled. The wind farm
parametrization was excluded in this simulation because a
time-static wind farm layout cannot represent the rapidly
growing wind farm layout over this time period and most ob-
servations were representative for wind-farm-free conditions.
Hence, only the undisturbed wind climate was evaluated, and
the observations were filtered accordingly, which will be dis-
cussed in more detail in Sect. 2.4.1. The instantaneous wind
field around hub height was written to output at a 10 min fre-
quency following the standard for wind energy assessments
(Menezes et al., 2020).

2.3 Wind farm simulations

The projected future wind farm layout used in the wind farm
simulations was constructed from the EMODnet wind farm
dataset (EMODnet, 2022) and GIS data from the Royal Bel-
gian Institute for Natural Sciences (Vigin, 2022) (Fig. 1).
Next to the operational wind farms today, this layout in-
corporates the concessions that are in different stages of
the construction process, zones for which consent has been
authorized and also large development zones. Because the
wind farm parametrization assumes that turbines within a
single grid cell never have any wake interactions, no addi-
tional information is required on the layout of the turbines in
each wind farm. The turbines were assumed constantly op-

erational, unless the wind speed was below the cut-in wind
speed or above the cut-out wind speed. Considering the com-
putational cost of these experiments, the time span was lim-
ited to one representative year in terms of the North Sea wind
field. This year was determined in a procedure based on the
one outlined in Tammelin et al. (2013). We used 31 years
of hourly, hub-height wind fields from the ERA5 reanalysis
(1990–2020) to compute a metric R for the representative-
ness per year and per grid cell:

Ri,j,y =
S1i,j,y
σS1

+
S2i,j,y
σS2

+
S3i,j,y
σS3

, (1)

where the indices i, j and y refers to a specific grid cell and
year. These R values were computed per year for each North
Sea grid cell between 51 and 55.5° latitude. Higher values
of R correspond to more representative years. The different
scores (S1–S3) are based on the agreement between single-
year and the long-term (31 year) histograms as computed by
the Perkins skill score:

PSS(H1,H2)=
n∑
b=1

MIN
(
F b
H1
,F b

H2

)
, (2)

where H1 and H2 represent the first and second histogram
and F b represents the normalized frequency for bin b. The
PSS represents the fraction of overlap between the two his-
tograms, so that a PSS of 1 (or 100 %) represents complete
overlap. For one-dimensional histograms, this metric is con-
nected to the Earth mover’s distance (EMD) metric, which
in contrast represents the area of mismatch between two his-
tograms (Rabin et al., 2008). S1 is the PSS between a wind
speed histogram for a single-year and the multi-year wind
speed histogram, using a bin width of 0.5 m s−1. S2 is the
same as S1 but for wind direction, using a bin width of 30°.
Finally, S3 represents the mean PSS between the single- and
multi-year wind speed distributions over 12 wind direction
sectors. The scores (S1–S3) are standardized by the standard
deviation to give each term in the sum equal weight. Summa-
tion of R over all grid cells then yields a representativeness
for a specific year. The different scores and the final score per
year are summarized in Figs. S1 and S2 in the Supplement,
respectively. Based on this procedure, the year 2016 was se-
lected for the simulations, as the representativeness is high
overall for this year (Fig. S1). In addition, the representative-
ness is especially high for wind direction (Fig. S2), which is
particularly important for the study of inter-farm wake inter-
actions.

Five simulations were performed, consisting of one sim-
ulation without wind farms (NOWF) and four simulations
using a fixed wind farm layout with the same turbine type
and capacity density for all wind farms (Table 1). Based on
the number of turbines, the total capacity and the surface
area of operational wind farms in the North Sea, a median
turbine capacity of 4.85 MW and a representative capacity
density of 8.1 MW km−2 were determined. The 5 MW refer-
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Table 1. Summary of the turbine type and capacity density used in
the different wind farm model simulations.

Identifier Turbine type Capacity density (MW km−2)

NOWF – –
NREL8.1 NREL 5 MW 8.1
IEA3.5 IEA 15 MW 3.5
IEA8.1 IEA 15 MW 8.1
IEA10.0 IEA 15 MW 10

ence wind turbine of the National Renewable Energy Lab-
oratory (NREL) (Jonkman et al., 2009)) with a hub height
of 90 m and a rotor diameter of 126 m was therefore used
in conjunction with the aforementioned capacity density in
one of the wind farm simulations (NREL8.1). Three addi-
tional cases were simulated in which the NREL 5 MW was
replaced by the 15 MW reference wind turbine of the Inter-
national Energy Agency (IEA) (Gaertner et al., 2020) with a
hub height of 150 m and a rotor diameter of 240 m, as 15 MW
turbines are expected to reach the market in a few years and
are now being selected for upcoming projects (Bento and
Fontes, 2019; Shields et al., 2021). The power curves of these
three turbines are available in Fig. S3. The three cases with
15 MW turbines were simulated with a different wind farm
capacity density.

– IEA3.5: low capacity density in which the inter-turbine
distance is 10 rotor diameters. This turbine spacing is
larger than is found in most offshore wind farms today
and corresponds to a lower cost per unit energy produc-
tion as the impact of turbine wakes is reduced and is
most relevant in regions where offshore space is rel-
atively abundant, such as for the United Kingdom or
Denmark (Borrmann et al., 2018).

– IEA8.1: the same capacity density as for the NREL8.1
scenario.

– IEA10.0: high capacity density with a larger revenue
per unit area but also increased wake-related losses.
This corresponds to a capacity density for planned
projects in regions where the available space is limited,
such as Belgium, the Netherlands and Germany (Bor-
rmann et al., 2018).

Based on the different simulations, the impact of the tur-
bine type and capacity density on the wake losses was as-
sessed. In addition, the roles of wind farm size and inter-
farm distance in these wake losses were investigated based
on the large variation in these properties over the wind farm
layout. The different simulations were compared along the
transects indicated on Fig. 1, which correspond to dominant
but also strongly disturbed wind directions, i.e. directions
along which the wind farms are densely clustered. For this
analysis, only winds in a sector of 30° around the transect

orientation (SW to NE for TR1, TR2 and TR4 and NW to
SE for TR3) were selected based on the centre grid cell on
the transect. The data selection based on the wind direction
reduced the dataset to approximately 14 % of the total for
transects TR1, TR2 and TR4 and to 8.1 % for TR3. Addi-
tionally, this transect analysis was extended to three stability
classes based on the bulk Richardson number (RB), a metric
for the dynamic stability, which will be discussed in more
detail in Sect. 2.5.3.

2.4 Measurement data

2.4.1 In situ masts

Wind measurements of 19 in situ stations (Fig. 1) were
obtained from the KNMI data platform, Meetnet Vlaamse
Banken, the Marine Data Exchange, the FINO data plat-
form and the TNO wind energy data platform (Table A1). Of
these 19 stations, 6 were actual meteorological masts with
measuring devices at multiple altitudes. The remaining sta-
tions correspond to coastal measurement poles and instru-
mentation mounted on oil, gas or light platforms and pro-
vide information at a single altitude. Average wind speed
and wind direction are available at 10 min intervals. A time-
line of the data availability is summarized for each station
in Fig. S4. For most stations, corrections were applied to the
measurements of the boom- or platform-mounted anemome-
ters and wind vanes in order to account for flow distortions
by the mast or other mounting infrastructure. These cor-
rections were performed by the data providers for the sta-
tions FINO1 and FINO3 (Westerhellweg et al., 2012; Leiding
et al., 2016), MMIJ (Werkhoven and Verhoef, 2012), WH and
WA. For the remaining stations with multiple anemometers
per height level, we avoided using measurements in the wake
of the mast or other infrastructure by selecting the measure-
ment with the highest 10 min average wind speed. A possible
drawback of this approach is that the measured wind speed
is overestimated in the case of lateral speed-up effects (Leid-
ing et al., 2016). If wind direction was provided with respect
to magnetic north, a magnetic-to-true north correction was
applied according to the location and timing of the dataset.
Finally, because no wind farm parametrization was included
in the evaluation run, measurements potentially taken in the
wake of wind farms were omitted from the dataset by filter-
ing out either a specific time range or a directional sector.
These dataset corrections are summarized in Table S1 in the
Supplement. A station-to-farm distance threshold of 50 km
was chosen to perform these corrections, as it is expected
that the impact of wind farm wakes on the long-term wind
speed statistics becomes relatively unimportant at this dis-
tance (Schneemann et al., 2020; Dirksen et al., 2022). The
total uncertainty on the wind speed measurements is a com-
bination of the uncertainties of calibration, mounting (includ-
ing flow obstruction by the mast), data acquisition and the
local site conditions. This total uncertainty can vary signifi-
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cantly between the stations. For the class 0.9A anemometers
at station MMIJ the total uncertainty was estimated at 1.5 %
for the top anemometer and 1.9 % for the boom-mounted
anemometers (Duncan et al., 2019). For the top anemome-
ters of the other meteorological masts, which have a compa-
rable class number as for MMIJ (Friis Pedersen et al., 2006),
we applied the same value of 1.5 % as the uncertainty esti-
mate. As the boom-mounted anemometers at the FINO sta-
tions were also mast-corrected prior to use, we adopted the
same value of 1.9 %. The mounting uncertainty for boom
anemometers at stations GG, LA and HGW is expected to be
larger because we only performed a simple correction. As-
suming an additional 2 % uncertainty on the mast correction,
this leads to a total uncertainty of 3.7 %. For the remain-
ing stations, we assumed a calibration uncertainty of 1.5%
(Coquilla et al., 2007), an operational uncertainty of 0.8 %
(Friis Pedersen et al., 2006) and an augmented 2 % uncer-
tainty on the data acquisition due to limited information on
acquisition and post-processing. For AWG1, P11B and WH
a mounting uncertainty of 5 % was estimated due to pres-
ence of lateral flow obstructions. For the other stations, where
the device is mounted on the top of a platform or platform-
mounted mast, a mounting uncertainty of 2 % was assumed
following Verkaik (2001).

2.4.2 Wind lidar

In addition to the cup anemometers, measurements from six
wind lidars were used for the evaluation (Fig. 1). These lidars
use light beam scanning technology to derive vertical profiles
of wind speed and direction at regular height intervals and al-
low evaluation of the wind field above the typical 90 m top of
meteorological masts. As for the in situ measurements, wind
speed and direction are provided as 10 min averages. The
data were obtained from the Dutch services TNO wind en-
ergy and Rijksdienst voor Ondernemend Nederland (RVO).
The lidars were installed during the pre-construction stages
of offshore wind farm development (Table A2). The LEGO,
MMIJ, K13 and EPL lidars are installed on the same plat-
forms as the cup anemometers (Table A1). The BO and TNW
lidars are floating lidars and are mounted on a Fugro SEA-
WATCH buoy. Estimates of the uncertainty are from Wouters
and Verhoef (2019a, b, c) for LEGO, EPL and K13; from
Poveda and Wouters (2015) for MMIJ; and from the report
by Dhirendra (2014) for the floating lidars BO and TNW.

2.4.3 ASCAT

The Advanced SCATterometer (ASCAT) sensor on the Eu-
ropean MetOp satellites uses radar technology to determine
the near-surface wind speed and direction over the sea (Gel-
sthorpe et al., 2000; Figa-Saldaña et al., 2002). Although the
ASCAT product only provides information on the surface
wind, it complements the in situ and lidar data as it covers
most of the North Sea basin. For this study, we considered

the L3-reprocessed ascending and descending passes of the
MetOp-A satellite from the website of the Copernicus Ma-
rine Service (CMEMS). The satellite was operational for the
complete 13 years of this simulation. Specifically, the variant
on a 12.5 km grid with a horizontal grid spacing of 25 km was
used, which has been validated against buoy measurements
(Verhoef and Stoffelen, 2009). The long-term instrumental
stability is estimated to be below 0.1 m s−1 for this product,
whereas the climatological uncertainty is ±0.1 m s−1, with
some anomalies of+1 m s−1 at the Dutch coast. The datasets
for both passes together provide roughly one instantaneous
measurement per day for most of the North Sea that we con-
sider (4500 samples in total). Only close to the coasts is data
coverage much lower (100–3000 samples), which is a well-
known issue with remotely sensed winds related to contami-
nation with land signal (Bourassa et al., 2019).

2.5 Evaluation approach

2.5.1 Model collocation with in situ and lidar

Over a 10 min period, the wind travels over a distance com-
parable to the edge length of a 0.025° grid cell. Because the
model wind components represent smoothed grid box aver-
ages, the 10 min time averages of the observations were di-
rectly compared to instantaneous values of the grid cell in
which the station is located. In the case of gaps in the time
series of the in situ and lidar data, the corresponding time
steps were also eliminated from the model grid point time
series. The model wind speed data were interpolated to the
measurement heights using the wind profile power law:

Vs = V (hm) ·
(
hs

hm

)α
, (3)

where Vs is the wind speed at sensor height, V (hm) is the
wind speed at the first model level below sensor height and
α is the shear coefficient which is computed as

α =
ln
(
V (hm+1)

/
V (hm)

)
ln
(
hm+1

/
hm
) , (4)

wherem+1 denotes the first model level above sensor height.
In contrast to the wind speed, the model wind direction at
sensor height was computed after linear interpolation of the
horizontal wind components of the model levels just above
and below sensor height. The Zephir 300S lidar has a well-
known 180° ambiguity that can occur in the wind direction
time series as it relies on a sonic anemometer just above the
lidar to determine the sign of the wind vector. In the case of
low wind speeds and/or flow obstructions, it is possible that
the incorrect sign is determined and the lidar’s wind direction
is 180° off (Knoop et al., 2021). We corrected this 180° error
by adding or subtracting 180° if the wind direction in the
measurements differs more than 90° from the modelled wind
direction (∼ 2 % occurrence) after Dirksen et al. (2022).
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2.5.2 Model collocation with ASCAT and triple
collocation

For the comparison with ASCAT, the model surface winds
were regridded to the 12.5 km grid of the measurements with
first-order conservative remapping. This ensures that all the
source grid cells contained within a target grid cell have sim-
ilar weight in the regridding, in agreement with the ASCAT
winds being computed from the signal of this complete area.
Afterwards, the measurement time series of each ASCAT
grid cell was matched by a model time series for that same
grid cell by linear interpolation in time.

Additionally, a comparison between the model, ASCAT
and in situ data was conducted at stations WH, EPL and
MMIJ. These stations were selected because the location is
far enough from the coast to ensure sufficient data points in
the ASCAT data and the measurement height is close to 10 m,
which reduces any vertical extrapolation errors to 10 m in
the in situ data. This extrapolation was done using the power
law with a constant shear coefficient of 0.11. The in situ data
were then also linearly interpolated to the ASCAT measure-
ment times, and all datasets were limited to the timings where
both ASCAT and in situ measurements are available. Finally,
the grid cells in which the stations are located were selected
from the model and ASCAT datasets for the comparison.

2.5.3 Stability classification

The comparison between COSMO-CLM and the measure-
ments in terms of wind speed was further extended to differ-
ent classes of atmospheric, dynamic stability because the sta-
bility strongly determines the wind conditions over the North
Sea (Stull, 1988; Sathe et al., 2011) and also determines the
atmospheric response to a wind farm forcing (Platis et al.,
2021). This stability classification was done based on the
bulk Richardson number (RB), which is computed as

RB =

g

θv

1θv
1z(

1u
1z

)2
+

(
1v
1z

)2 , (5)

where g corresponds to the gravitational constant, θv is the
virtual potential temperature, z is height, and u and v are
the zonal and meridional wind speed components, respec-
tively. The overbar over the virtual potential temperature
denotes that it is averaged over the four model layers be-
tween 50 and 150 m height. Finally, the gradients in u, v and
θv were determined by averaging the gradients between each
of the subsequent layers between 50 and 150 m. Based on
the (RB), we can identify three distinct dynamic stability
regimes (Grachev et al., 2013; Dirksen et al., 2022).

– Unstable: RB < 0. This is the case when the tempera-
ture gradient is negative, which corresponds to an un-
stable thermal stratification.

– Weakly stable: 0≤ RB ≤ 0.25. This is the case when the
temperature gradient is positive, but the temperature ef-
fect is weak compared to the vertical wind shear. In this
case, the wind-shear-generated turbulence is relatively
strong compared to the buoyant damping.

– Stable: RB > 0.25. This is the case when the tempera-
ture gradient is positive and strong compared to the ver-
tical shear. In this case, the wind-shear-generated turbu-
lence is strongly damped, and this region of the ABL
can be considered dynamically stable.

Gradients were calculated based on potential temperature
instead of virtual potential temperature as an analysis of the
driving data showed minimal variations of specific humidity
over the considered height range. A comparison of the mod-
elled temperature gradients with measured temperature gra-
dients at station MMIJ between 90 and 21 m a.m.s.l. shows
a good correspondence in the long-term temperature gradi-
ent probability distribution, indicating sufficient model skill
for this subdivision into stability classes (Fig. S5). Because
vertical profiles of pressure and temperature are generally
not available over the range of the meteorological masts or
wind lidar scanning ranges, the stability criterion can only be
computed for the model. Based on a good temporal corre-
lation between the temperature gradients of COSMO-CLM
and measurement mast MMIJ (Pearson correlation coeffi-
cient= 0.85), the time steps matched to a stability class for
the model grid cell nearest to each measurement location
were also matched to that stability class for the measurement
data.

2.5.4 Evaluation metrics

We compared the magnitudes of the mean wind speed differ-
ence and the observational uncertainty to identify any model
bias: an exceedance of the observational uncertainty at a
measurement station was used as the threshold for the pres-
ence of a model bias at that location. In addition, the PSS
(Sect. 2.3) was employed as a metric to express the agree-
ment in the shape of two histograms of either wind speed or
wind direction.

Because the relationship between wind speed and wind
turbine power production is non-linear, we also evaluated
differences between COSMO-CLM and the observations in
terms of the capacity factor, which is given by

CF= 100

n∑
i=1
P (Vi)

nP (Vr)
[%], (6)

where Vi is the hub-height wind speed at some instance i in
the time series; Vr is the rated wind speed; and P is the gen-
erated power, which is a turbine-specific function of the wind
speed. So, the capacity factor is the ratio between the power
production of a specific turbine based on a wind speed time
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series and the theoretical, maximum power production over
that same period, i.e. for a turbine continuously operating at
full capacity. This is an idealized notion of the capacity factor
as it concerns an isolated turbine which constantly operates
according to the power curve. For these calculations, we con-
sidered the power curve of the NREL 5 MW reference wind
turbine, with a hub height of 90 m, for the meteorological
masts with the top anemometer below 100 m and the power
curve of the DTU 10 MW reference wind turbine (Bak et al.,
2013), with a hub height of 119 m, for FINO1, FINO3 and
the wind lidars (Fig. S3). An uncertainty range on the capac-
ity factor based on the observed wind speeds was determined
based on the uncertainty on the wind speed measurements:
the observed wind speed distribution was shifted linearly by
the product of the uncertainty and the mean wind speed after
which upper and lower bounds on the capacity factor were
computed. As the capacity factor is a percentage, absolute
differences are also a percentage, so to avoid confusion it is
always explicitly stated whether absolute or relative differ-
ences in the capacity factor are considered.

3 Results and discussion

3.1 Model evaluation

This subsection covers the model performance evaluation.
First, the general evaluation based on all validation sources
and the complete height range (10 to 290 m) is described.
This is followed by a more detailed performance analysis at
turbine hub height (∼ 100 m), and finally the evaluation is
extended to the different atmospheric stability classes.

The difference in the long-term mean wind speed between
the in situ and lidar stations varies with height (Fig. 2). Be-
low 90 m, the difference is generally negative (model un-
derestimates the mean) and exceeds the measurement uncer-
tainty range, indicating a model bias to lower wind speeds.
However, the magnitude of the bias generally drops with in-
creasing altitude over the considered height range, albeit with
some exceptions (MMIJ, TNW). At measurement heights at
or above 90 m, the difference is generally smaller and falls
within the uncertainty range of the measurements. The gra-
dient with height persists and the difference is positive above
130 m at the locations of the wind lidars. Although differ-
ences over height are substantial, there is no robust indica-
tion of regional differences in the ability of COSMO-CLM to
model the climatological mean wind speed. The same figure
but with relative differences is included in the Supplement
(Fig. S6).

The mean difference between COSMO-CLM and the AS-
CAT data is between −0.5 and 0.5 m s−1 for most grid cells
(Fig. 3). For approximately 45 % of the grid cells the mean
difference is within the ASCAT climatological uncertainty
of ±0.1 m s−1. These grid cells are generally located far-
ther from the coast and correspond to the regions without
in situ measurements, which is an indication of good model

performance in this region. The model underestimation near
the surface that was identified against the in situ data in the
southern North Sea is much smaller than the differences com-
pared to ASCAT in this region (cf. Figs. 2 and 3). A three-
way comparison with three in situ stations shows that the
mean differences against the in situ data exceed the in situ
measurement uncertainty for both COSMO-CLM and AS-
CAT (Fig. 3). Whereas COSMO-CLM generally underesti-
mates the mean near-surface wind speed, ASCAT overesti-
mates it with a larger magnitude, which explains the differ-
ences in PSS values. The PSS values are similar when both
COSMO-CLM and ASCAT are corrected for the systematic
bias with respect to the in situ data, which indicates that both
perform similarly in approximating the distribution shape of
the in situ data.

The distributions of wind speed near 100 m height match
well with the meteorological masts and lidar stations in most
cases (Fig. 4), leading to a PSS generally above 95 %. The
associated absolute differences in the idealized capacity fac-
tor are within the uncertainty based on the wind speed mea-
surements for 4 out of 10 stations. For FINO1, K13, MMIJ
and HGW the differences are outside the uncertainty range,
but the deviations from the lower bound of the uncertainty
range are less than 1 %, while the deviations are higher for
the GG and LA masts. For K13 and HGW the capacity factor
difference exceeds the capacity factor uncertainty, whereas
the mean wind speed difference is within the wind speed un-
certainty, which can be linked to the non-linear relationship
between wind speed and power production.

Although the inter-annual variability of the annual mean
hub-height wind speed is typically around 1 m s−1, the cor-
responding variability in the wind speed bias between the
model and the measurements is typically around 0.1 m s−1

or 10 % of that value (Table 2). The corresponding overlap
between the single-year histograms generally does not vary
more than 2 % over the years. Hence, the agreement in dis-
tribution location and shape between COSMO-CLM and the
measurements remains consistent over consecutive years, re-
gardless of the inter-annual variability in the wind conditions.

The intra-annual cycle in the wind speed distribution is
also well represented by the model (Fig. 5). The gradual
seasonal variation from higher (winter) to lower (summer)
median wind speeds is accurately reproduced in addition
to the variation in distribution width (Q25–Q75 range) and
more extreme conditions (Q5 and Q95). Moreover, in ex-
treme months the model also succeeds in modelling the wind
speed distribution as can be deduced from Fig. 5b at station
TNW for February 2020, albeit with a heavier right tail and
consequently more winds above the cut-out wind speed.

Evaluation of the long-term wind direction histograms
near turbine hub height (using a bin width of 20°) shows
an overlap of 95 % or more in most cases (Table 3) with
the magnitude of the bias generally below 4°. A reason
for the stronger deviation at FINO3 and EPL has not been
identified. Because the considered measurements vary sub-
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Figure 2. Wind speed bias (m s−1) for the complete time span of each measurement dataset. This concerns measurements between 10 and
290 m a.m.s.l. The vertical range is subdivided into 20 m intervals for readability. The presence of an asterisk indicates that the bias is within
the measurement uncertainty. Stations are clustered per region. The considered time periods for each measurement dataset can be found in
Tables A1 and A2.

Table 2. Inter-annual range of the mean wind speed and of the agreement between the model and observations, as expressed by the mini-
mum/maximum annual mean difference and the minimum/maximum annual PSS for the different years in the measurement period.

Station Period (NR years) Annual mean Mean difference
(m s−1) (m s−1) PSS (%)

MAX MIN MAX MIN MAX MIN

FINO3 (107 m) 2010–2013 (4) 11.2 9.5 −0.11 −0.22 98 97
MMIJ (92 m) 2012–2015 (4) 10.3 9.8 −0.44 −0.50 96 94
K13 lidar (115 m) 2018–2020 (3) 10.4 9.9 −0.2 −0.28 97 97
LEGO lidar (115 m) 2015–2020 (6) 11.1 9.2 −0.18 −0.28 97 95
LA (82 m) 2008–2010 (3) 9.5 8.6 −0.32 −0.47 95 93

stantially in measurement height, i.e. from 62 m a.m.s.l. up
to 120 m a.m.s.l., this comparison indicates consistency of
the good performance with height. The variations of the
wind speed statistics with the wind direction are also cap-
tured by the model (Fig. S7). This accurate reproduction of
the wind direction distributions and the direction-dependent
wind speed distributions is encouraging for the application to
wind farm modelling as wind farm shapes are tailored to the
regional wind climate.

The general differences in mean wind speed profiles for
the three stability classes agree well between the model and
the measurements (Fig. 6): winds are strongest under weakly
stable conditions and weakest under stable conditions, with
the wind speeds under unstable conditions falling in between.

The agreement between the profiles of the model and the
measurements differs between the stability classes: under
stable conditions the shear in the model is too strong be-
tween 40 and 200 m, leading to a negative model bias be-
low 160 m for EPL and LEGO and below 180 m for K13 and
TNW. Around 100 m, the respective underestimations are at
least −0.3 and −0.6 m s−1. Such an underestimation under
stable conditions is not uncommon for climate models (Wi-
jnant et al., 2014; Sheridan et al., 2021). For weakly stable
conditions, there is not a clear bias around 100 m, but the
deviations below 90 m and above 150 m are outside of the
observational uncertainty. The small vertical gradient under
unstable conditions is represented well by the model with
only small deviations that are well within the measurement
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Figure 3. Difference in long-term mean wind speed between COSMO-CLM and ASCAT. Yellow dots indicate the measurement stations
for triple collocation. The text boxes summarize the mean 10 m wind speed for three in situ stations and the agreement of ASCAT and
COSMO-CLM in terms of the mean difference and the PSS. The PSS values between brackets are after elimination of the mean difference
between the two histograms to remove the effect of distribution location.

Figure 4. Histograms of the collocated wind speed datasets. Orange: overlap between the histograms; light orange: only COSMO-CLM;
grey: only the measurements. In addition, the associated PSS, the capacity factor based on the measured wind speeds and the absolute
difference in capacity factor between the model and the measurements are indicated. The presence of a red asterisk indicates that the capacity
factor difference falls within the uncertainty on the capacity factor for the measurements.
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Figure 5. Boxplots representing the multi-year wind speed distribution per month for the observations (grey) and the model (orange). Shown
for the three masts and three lidar stations at turbine hub height. The box corresponds to the Q25–Q50–Q75 wind speeds. The lower and
upper whiskers are the Q5 and the Q95 percentiles, respectively.

Table 3. Bias in the wind direction (model – observations) and the
Perkins skill score between the histograms of wind direction (bin
width= 20°).

Station Bias (°) PSS (%)

FINO3 (101 m) −8.0 96
FINO1 (91 m) 1.9 95
TNW lidar (120 m) −4.0 97
K13A lidar (116 m) −2.2 97
MMIJ lidar (115 m) 1.0 96
EPL lidar (116 m) 8.7 93
LEGO lidar (115 m) 0.7 96
London Array (78 m) −1.9 96
Humber Gateway (86 m) 2.3 96
Greater Gabbard (62 m) −3.5 97

uncertainty over the complete height range. The hub-height
wind speed distributions as reflected in the boxplot mainly
differ in distribution location, with the strongest differences
under stable conditions. Corresponding capacity factor val-
ues were calculated with lower and upper uncertainty bounds
for the observations (Fig. S8). Under stable conditions, the
deviations between the model and observations exceed the
uncertainty range, so the absolute model underestimation of
the capacity factor is at least 2.5 %. For unstable and weakly
stable conditions, the deviations are within the uncertainty
range.

3.2 Impact of wind farm characteristics on cluster-scale
wake losses

This subsection covers the results of the wind farm simula-
tions. First, the impact of the NREL8.1 base scenario on the
wind climate and wind resource is described, also under dif-
ferent atmospheric stability conditions. Afterwards, the dif-
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Figure 6. Model evaluation for different stability classes. Top row: vertical profiles of the mean wind speed per stability class for four lidar
stations (full line) and the corresponding model output (dashed line). The stability classes are stable (blue), unstable (pink) and weakly
stable (green). The indicated percentages are the relative frequency of the different stability classes at hub height. Bottom row: boxplots
of the hub-height wind speeds per stability class for the same four lidar stations (grey) and the corresponding model output (orange). The
box corresponds to the Q25–Q50–Q75 wind speeds. The asterisk indicates the mean, and the lower and upper whiskers are the Q5 and the
Q95 percentiles, respectively.

ferent wind farm scenarios are compared in terms of cluster-
scale wake effects and efficiency of power production.

The modelled mean wind speed at 90 m for 2016 varies
from 7.5 m s−1 at the coast up to 10 m s−1 in the open North
Sea (Fig. 7). The associated capacity factor varies between
45 % and 60 %, and the simulated pattern agrees well with
earlier, multi-decadal estimates over the North Sea (Geyer
et al., 2015). Stability separation shows that the capacity fac-
tors are generally largest under weakly stable conditions and
can reach 75 % in the open North Sea. For stable conditions,
capacity factors are considerably lower but also prone to the
bias discussed in Sect. 3.1. The bottom row of Fig. 7 vi-
sualizes the impact of the projected, future wind farm lay-
out if they were all occupied with NREL 5 MW turbines at
8.1 MW km−2. Without subdividing for stability, the absolute
reductions of the full-year capacity factor in the immediate
vicinity of farms located in dense clusters are around 15 %,
with cumulative contributions from multiple wind farms. The
magnitude of the long-term resource reductions is similar to
what other studies have identified in terms of closely spaced
wind farms (Akhtar et al., 2021; Fischereit et al., 2022b).
Very close to the larger farms, larger values can be found
even when the farms are isolated. The absolute and relative
changes in the capacity factor vary over the stability classes.
Absolute capacity factor reductions are typically the small-

est for stable conditions, but these are the largest in relative
terms as capacity factors are small themselves. In weakly sta-
ble conditions, absolute capacity factor reductions are much
higher, as these exceed 13 % over large zones within and out-
side the wind farm clusters and 5 % more than 20 km from
wind farm clusters and larger wind farms.

The impact of the atmospheric stability on the wind-farm-
induced reduction in hub-height wind speed can be anal-
ysed in more detail along the four analysis transects (Fig. 8).
For TR1, TR2 and TR4, the data are dominated by weakly
stable conditions (∼ 65 %) compared to unstable (∼ 19 %)
and stable (∼ 16 %) conditions, whereas for TR3 unstable
conditions are more prevalent (∼ 59 %) compared to stable
(∼ 29 %) and weakly stable (∼ 12 %) conditions. The rel-
ative reductions at the end of wind farms typically exceed
20 % for all stability classes, but reductions are generally
smaller for unstable conditions than for stable and weakly
stable conditions. However, the transects do not show a sig-
nificantly slower wind farm wake recovery for stable condi-
tions, as has been found based on observations (Cañadillas
et al., 2020; Platis et al., 2021). The presented transect anal-
ysis also differs strongly from such studies in that it consid-
ers time averages of different wind speeds and covers a very
large extent with the stability and wind direction criterion
only evaluated at the centre of the transects. Added to that,
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Figure 7. Maps of the modelled North Sea wind climatology at 90 m a.m.s.l., the corresponding wind resource in terms of the capacity factor,
and the resource deficit under the NREL8.1 scenario for the complete year and for the three stability classes. Top: maps of the yearly mean
wind speed (m s−1) under the NOWF scenario. Middle: capacity factor under the NOWF scenario (%). Bottom: absolute capacity factor
deficit for the NREL8.1 scenario (%). White polygons represent wind farm locations. Capacity factor computations are based on the power
curve of the NREL 5 MW wind turbine.

modifications of dynamic stability by wind farms, which has
previously been modelled with LES (Porté-Agel et al., 2014;
Lu and Porté-Agel, 2015), could be strongly enhanced by the
large, non-existent wind farms used in this study. The associ-
ated capacity factor profiles show that the relative impact on
the wind resource is large for all stability classes (Fig. S9).
The forcing by large wind farms and clusters can lead to a
halving of the capacity factor for all stability classes in some
transect sections. The relative impact on the capacity factor
values is much larger than for the mean wind speed, due to
the non-linearity of the turbine power curves (Fig. S3).

The wind farm capacity density used in the different wind
farm simulations strongly determines the mean wind speed
profile along these transects (Fig. 9). In each case, zones of
densely clustered farms (< 20 km apart) are characterized by
the strongest reductions and a limited farm wake recovery
that is typically less than half of the maximum deficit at the

previous wind farm. The scenario with IEA 15 MW turbines
at 3.5 MW km−2 is characterized by the smallest reductions,
which are typically within 1.5 m s−1 at the upwind side of
wind farms. For higher capacity densities, these upwind edge
reductions are often more than twice as large and can ex-
ceed 3 m s−1 under very dense clustering. Only for recovery
distances of 30–60 km, the IEA8.1 and IEA10.0 scenarios
converge to within 0.5 m s−1 of the IEA3.5 scenario. Fur-
thermore, the impact of wind farm size on the intensity of
the reduction can be assessed by focusing on the first wind
farm in each transect: the larger wind farms of TR1, TR3
and TR4 have an along-transect farm length between 24 and
31 km, while this is only 9 km for the one in TR2. The as-
sociated reductions at the downwind edge of the wind farms
are approximately twice as large for TR1, TR3 and TR4 than
for TR2.
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Figure 8. Relative deficit of the along-transect mean wind speed (%) at 90 m a.m.s.l. for the four transects indicated on Fig. 1. This concerns
the NREL8.1 scenario, subdivided in the three dynamic stability classes: unstable (pink), weakly stable (green) and stable (blue) according
to the RB. Wind data are only considered when the wind direction deviates within ±15° from the transect orientation (W to E) at the middle
grid cell of each transect. Grey shadings represent wind farm locations.

Figure 9. Transects of the mean wind speed at turbine hub height for the different wind farm scenarios. These transects correspond to the
four lines in Fig. 1. Wind data are only considered when the wind direction deviates within ±15° from the transect orientation (W to E) at
the middle grid cell of each transect. Grey shadings represent wind farm locations.
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When converting the wind speed information of the
NOWF scenario into capacity factors, the transect averages
are∼ 58 % for TR1, TR2 and TR4 and∼ 38 % for TR3 when
considering the hub height and power curve of the NREL
5 MW turbine. For the IEA 15 MW turbine, these increase
to ∼ 66 % and ∼46%, respectively. Figure 10 shows that the
associated, absolute reductions in these capacity factor fol-
low the general patterns established for the mean wind speed.
In each transect, the IEA3.5 scenario is characterized by the
smallest deficits at the upwind edge of wind farms, typically
around 10 % with larger values in dense clusters. For higher
capacity densities, the upwind edge reductions reach 25 % to
30 % for closely spaced wind farms. The intensity of these
upwind edge reductions is strongly dependent on the degree
of upwind clustering and the sizes of the upwind farms. For
the scenarios with higher capacity densities, the superposi-
tion of the high momentum sink on the already intense farm
wake deficit eventually results in much lower wind farm ef-
ficiencies for these scenarios. For the SW–NE-oriented tran-
sects, the impact of the turbine type becomes apparent: for
the 90 m turbines in the NREL8.1 scenario, the absolute
deficits over the wind farms exceed those of the IEA8.1 sce-
nario, which translates to a much stronger reduction in rela-
tive terms as the unaltered (NOWF) capacity factors for the
5 MW turbines are lower than for the 15 MW turbines.

The wind farm layout in the IEA8.1 scenario is signifi-
cantly more efficient than for the NREL8.1 scenario, as re-
flected in the layout-integrated capacity factor and full load
hours in the evaluation domain (Table 4). As a consequence,
the integrated AEP is 27.4 % higher in the former. This dif-
ference is partly due to the rated wind speed being 0.8 m s−1

lower for the 15 MW turbines so that the rated section of
the power curve is more wide (Fig. S2). Added to that,
taller turbines can take advantage of the wind speed gra-
dient with height, which leads to a larger fraction of wind
speeds in the rated regime and a reduced fraction in the
steep part of the power curve. To disentangle both effects,
the 90 m wind speed data of the NREL8.1 scenario were
fed to the 15 MW power curve, which resulted in an AEP
of 539 TW h. This implies that approximately 40 % of the
increase in AEP can be attributed to the lower rated wind
speed and approximately 60 % to the wind speed gradient
with height. Combining 15 MW turbines with a low capacity
density of 3.5 MW km−2 only reduces the integrated capac-
ity factor from 64.2 % in the NOWF scenario to 51.8 %, as
a consequence of limited intra- and inter-farm wake impacts,
in agreement with Meyers and Meneveau (2012) and Gupta
and Baidya Roy (2021). From IEA3.5 to IEA8.1, the capacity
density increases by 131 %, whereas the AEP only increases
by 82 %. From IEA8.1 to IEA10.0, these increases are 23.4 %
and 13.1 %, respectively. This efficiency degradation when
moving to larger capacity densities can be recognized in
a reduced capacity factor and a reduction in the full load
hours (FLH): compared to IEA3.5, the IEA10.0 capacity fac-
tor is reduced from 51.8 % to 38.2 % and the FLH is reduced

Table 4. Annual energy and power metrics integrated over all wind
farms in the evaluation domain. CF: layout-integrated capacity fac-
tor. FLH: full load hours for the complete layout. AEP: annual en-
ergy production for the complete layout. The calculations are based
on the wind speed data of the wind farm grid cells. The capacity fac-
tors for the NOWF simulation correspond to efficiency in absence
of intra- and inter-farm wakes.

Experiment Turbine Total CF FLH AEP
capacity (%) (h) (TW h)

(GW)

NOWF NREL 5 MW – 56.1 – –
NOWF IEA 15 MW – 64.2 – –
NREL8.1 NREL 5 MW 191 32.7 2549 488
IEA3.5 IEA 15 MW 83 51.8 4136 342
IEA8.1 IEA 15 MW 191 41.4 3252 622
IEA10.0 IEA 15 MW 236 38.2 2981 704

by approximately 1150 h. This follows from the increased
wake losses that are further exacerbated by the densely clus-
tered layout and the presence of several large wind farms
that are typically characterized by very low power densities
(Volker et al., 2017).

4 Conclusions

We have used the regional climate model COSMO-CLM
to quantify the dependence of long-term, cluster-scale wake
losses on the turbine type, capacity density, wind farm spac-
ing and wind farm size for a hypothetical future wind farm
layout. First, the model skill in simulating the wind climate
was evaluated in a comparison with in situ, lidar and satellite
data, which revealed the following.

– The differences between the measured and modelled,
long-term mean wind speed at turbine hub height (∼
100 m) are generally within the measurement uncer-
tainty. This is also the case for differences at higher
altitudes (up to 290 m), but closer to the surface
COSMO-CLM underestimates the mean wind speed (∼
−0.5 m s−1). Under stable stratification (∼ 25 %), the
model underestimates the long-term mean wind speed
at turbine height but not under weakly stable and unsta-
ble stratification (∼ 75 %).

– The agreement between the measured and modelled,
long-term wind speed histograms is high, with a PSS
above 95 % in most cases. The theoretical capacity fac-
tors derived from these histograms agree well overall,
but small underestimations (∼ 1 %–5 %) are present at
some locations.

– The agreement with the wind speed measurements is
consistent over the different years of the simulation pe-
riod as inter-annual variations in the mean wind speed
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Figure 10. Transects of the absolute capacity factor deficit at hub height for the different wind farm scenarios. These transects correspond to
the four lines in Fig. 1. Wind data are only considered when the wind direction deviates within ±15° from the transect orientation (W to E)
at the middle grid cell of each transect. Grey shadings represent wind farm locations.

difference and the PSS are small. The seasonal variabil-
ity in the shape and location of the wind speed distribu-
tion is also captured by COSMO-CLM.

– Multi-year histograms of wind direction also agree well,
with again a PSS above 95 % in most cases. The vari-
ation of the wind speed histograms over 12 directional
bins (30°) is also adequately captured in the model. This
encourages the application of COSMO-CLM to wind
farm modelling as wind farm shapes are adapted to the
regional wind climate.

As deviations mainly occur under stable conditions, a
stability-dependent bias correction could be considered for
future applications in addition to continuous efforts to im-
prove the model. Overall, this evaluation emphasizes the
value of having a large set of wind measurements available
in regions for offshore wind farm development, as it allows a
benchmarking of mesoscale models over the region of inter-
est.

The application of the model to a hypothetical, future wind
farm layout indicates that the creation of dense wind farm
clusters is accompanied by an alteration of the surrounding
wind climate and significant farm-to-farm wake interactions.
The impact of these interactions depends heavily on the tur-
bine type, the capacity density, the inter-farm spacing and
the size of the wind farms. In this study, the comparison of
two turbine types (NREL 5 MW and IEA 15 MW) and three
capacity densities (3.5, 8.1 and 10 MW km−2) show the fol-
lowing.

– For a capacity density of 8.1 MW km−2, the layout-
integrated AEP is ∼ 27 % larger for a layout of 15 MW
turbines than for 5 MW turbines. This difference is
linked to the layout-integrated capacity factor being
considerably larger when using taller, 15 MW turbines
because of the increase in the wind resource with height
(60 %) and a lower rated wind speed (40 %). The use of
15 MW turbines compensates for ∼ 37 % of the wake
losses recorded in the NREL8.1 simulation.

– Under dominant wind directions with dense wind farm
clustering, the wind resource is strongly reduced due to
inter-farm wakes. Assuming 15 MW turbines, the abso-
lute reductions in the capacity factor at the upwind edge
of wind farms range from 3 % to 17 % for a capacity
density of 3.5 MW km−2 depending on the degree of
clustering and the size of the upwind farms. For a ca-
pacity density of 8.1 MW km−2 this ranges from 5 % to
30 % and for 10 MW km−2 from 5 % to 33 %.

– Assuming a projected, future wind farm layout with
15 MW turbines, increases in the capacity density of
the wind farms lead to strong efficiency reductions. The
layout-integrated capacity factor reduces from 51.8 %
for a 3.5 MW km−2 capacity density to 38.2 % for a
10 MW km−2 capacity density, due to the intensification
of intra- and inter-farm wake losses.

– Wind farm wake effects play an important role for all
considered atmospheric stability classes, even if the im-
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pact is a bit smaller for unstable conditions. Under
strongly waked wind directions, the low capacity factors
(20 %–30 %) under stable conditions (RB > 0.25) can
be further reduced to well below 10 %, thereby nearly
completely halting the production of some of the sim-
ulated wind farms. Although these results are possibly
impacted by the negative model bias that was found for
stable stratification, it is expected that this large impact
under stable conditions still holds.

Whereas comparisons between wind farm parametrizations
have shown large variations in terms of modelled wind speed
deficits inside and behind wind farms (Ali et al., 2023), val-
idation efforts in several mesoscale models have indicated a
very good performance of the Fitch WFP (Fischereit et al.,
2022c; van Stratum et al., 2022; Ali et al., 2023). Nonethe-
less, the use of other WFP schemes might significantly al-
ter the magnitudes presented here, more so due to the large
clusters and large wind farms included in the considered lay-
out, which can even lead to wake losses for background wind
speeds well above rated. Hence, further benchmarking stud-
ies of WFPs for a range of atmospheric conditions and val-
idation data could help in further reducing this WFP-related
uncertainty. An additional complication here is that this study
includes wind farms of non-existent sizes for which valida-
tions simply do not exist.

Even if the mesoscale wind farm parametrization approach
has limitations, these modelling studies provide valuable in-
formation for the efficient deployment and operation of off-
shore wind infrastructure, more so because mesoscale mod-
els can consider the climatic variability of wake effects, for
large regions. This study demonstrates the potential of this
modelling approach to explore a large variety of wind farm
characteristics and layouts in a climatic context, which can
aid in a more efficient expansion of the offshore infrastruc-
ture.
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Appendix A

Table A1. Description of the in situ measurement stations. S: wind speed (m−1);D: wind from direction (°). The superscripts a, b and c link
measurement heights to measurement devices in the next column. 1×, 2× and 3× refers to one, two, or three anemometers and/or wind vanes
at one measurement height. Source acronyms: KDP, Royal Netherlands Meteorological Institute (KNMI) data platform; MNVB, Meetnet
Vlaamse Banken; MDE, the Marine Data Exchange; FINO, Forschungsplattformen in Nord- und Ostsee; TNO, Nederlandse Organisatie
voor Toegepast-natuurwetenschappelijk Onderzoek.

Name (abbreviation) Location Heights (m a.m.s.l.) Measured variables Period Uncertainty Source
(%)

Westhinder (WH) platform 26 2× S,D 2008–2020 5.6 MNVB
Wandelaar (WA) measuring pole 26 2× S, 1×D 2013–2020 3.3 MNVB
Scheur-Wielingen (SW) measuring pole 25 1× S,D 2010–2020 3.3 MNVB
Oosterschelde (OS) measuring pole 17 2008–Jun 2019 3.3 KDP
Vlakte van de Raan (VVDR) measuring pole 17 Sep 2009–Jun 2019 3.3 KDP
Lichteiland Goeree (LEGO) platform 38 2× S,D 2008–2020 3.3 KDP
Europlatform (EPL) platform 29 2× S,D 2008–2020 3.3 KDP
Ijmond (IJM) measuring pole 17 2008–Jun 2019 3.3 KDP
P11-B (P11B) mast on platform 51 2× S,D 2010–2020 5.6 KDP
Meteomast IJmuiden (MMIJ) meteorological mast 27, 58a, 92b a : 3× S,D, b : 2× S Nov 2011–Mar 2016 a : 1.9; b : 1.5 TNO
K13A (K13) mast on platform 74 2× S,D 2008–2019 3.3 KDP
F3N (F3) mast on platform 60 2x× S,D 2010–Dec 2019 3.3 KDP
Huibertgat (HGT) measuring pole 18 2008–Jun 2019 3.3 KDP
AWG-1 (AWG1) mast on platform 60 2× S,D Sep 2009–2020 5.6 KDP
FINO1 (FINO1) meteorological mast 51, 71, 91a, 102b a : 1× S,D; b : 1× S 2008–Jul 2009 a : 1.9; b : 1.5 FINO
FINO3 (FINO3) meteorological mast 50, 70, 90, 100a, 107b a : 3× S,D; b : 1× S 2009–Oct 2014 a : 1.9; b : 1.5 FINO
Humber Gateway (HGW) meteorological mast 34, 52, 70, 88a, 68b, 90c a : 2× S; b : 1×D; c : 1× S Oct 2009–Jul 2011 a : 3.7; c : 1.5 MDE
Greater Gabbard (GG) meteorological mast 42, 52, 72, 82a, 62b, 88c a : 2× S; b : 2×D; c : 1× S 2008–2010 a : 3.7; c : 1.5 MDE
London Array (LA) meteorological mast 20, 32, 57a, 29, 78b, 82c a : 2× S; b : 1×D; c : 1× S 2008–2010 a : 3.7; c : 1.5 MDE

Table A2. Description of the lidar measurement stations. Source acronyms: RVO, Rijksdienst voor Ondernemend Nederland; TNO, Neder-
landse Organisatie voor Toegepast-natuurwetenschappelijk Onderzoek.

Name (abbreviation) Type Location Heights (m a.m.s.l.) Period Uncertainty Source
(%)

Borssele 1 (BO) Zephir 300S buoy 40:20:200 Jun 2015–Feb 2017 3.3–3.4 RVO
Lichteiland Goeree (LEGO) Leosphere Windcube platform 90:25:290 and 63 Nov 2014–2020 2.6–3.3 TNO
Europlatform (EPL) Zephir 300S platform 91:25:291 and 63 May 2016–2020 2.9–3.5 TNO
Meteomast IJmuiden (MMIJ) Zephir 300S platform 90:25:290 Nov 2011–Mar 2016 2.5–3.1 TNO
K13A (K13) Zephir 300S platform 91:25:291 and 63 2018–2020 2.7–3.2 TNO
TNVD Waddeneilanden A (TNW) Zephir 300S buoy 40:20:200 Sep 2019–2020 3.3–3.4 RVO

Code and data availability. The code and data used to
generate Figs. 3–10 can be retrieved as one dataset at

(Borgers, 2023). The
ERA5 reanalysis data used to identify representative wind
years were downloaded via the Copernicus Climate Change
Service (C3S) Climate Data Store (CDS) and can be found at

(Hersbach et al., 2022). The
ASCAT data were retrieved from the Copernicus Marine Service via

(Copernicus Marine Service,
2022). The in situ measurements of the KNMI can be retrieved from
their data platform, at
(Koninklijk Nederlands Meteorologisch Instituut, 2022). For the in
situ data at the Belgian coast, data are accessible via the website of

the Belgian coastal measurement network, at
/ (Meetnet Vlaamse Banken,

2022). Mast data at the coast of the United Kingdom are
available via the website of the Marine Data Exchange, at

(The Crown Estate,
2022). For the German Bight, the data are available at the
website of the FINO data platform, / (Das
Bundesamt für Seeschifffahrt und Hydrographie, 2022). Data
from the IJmuiden meteorological mast and from the platform-
mounted wind lidars can be found at the TNO data cloud
website (Nederlandse Organ-
isatie voor toegepast-natuurwetenschappelijk onderzoek, 2022).
Finally, the data from the buoy-mounted lidars can be found
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at (Rijksdienst voor Ondernemend
Nederland, 2022).

Supplement. The supplement related to this article is available
online at: .
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